

Introduction

- Friction stir welding (FSW) is a solid state welding process in which a rotating bit generates heat and stirs material together
- Offers significantly better mechanical properties than traditional fusion methods
- Very beneficial in high strength applications where welded material must maintain preweld properties
- Concerns about slow travel speed and excessive tool wear exist

Figure 1: Friction stir welding of high strength steel

Project Goals

- Maximize weld parameter efficiency while maintaining mechanical properties of parent material
- Explore tools that are both able to withstand rigors of production and are cost effective
- Compare results with fusion welding methods

Procedure

- Tools chosen
- Weld parameters developed
- Microstructural characterization
- Mechanical property evaluation

Figure 2: Tungsten rhenium hafnium carbide tool

The Efficacy of Friction Stir Welding in High **Strength Steel Production Timothy Fountain** (South Dakota School of Mines & Technology) Faculty Advisors: Dr. Bharat Jasthi, Dr. Michael West

Parameter Development & Microstructural Characterization

Figure 5: Microhardness traverses of different weld parameters

Tensile Testing

Material Condition	YS (ksi)	UTS (ksi)	Elongation (%)
Parent Material (as rolled)	108 ± 0.2	148 ± 1.4	6.5 ± 0.7
Parent Material (thick, heat treated)	121 ± 0.4	148 ± 0.8	11.7 ± 0.8
Parent Material (thin, heat treated)	123 ± 0.4	143 ± 1	12.2 ± 1
Fransverse Weld (as welded)	123 ± 1.6	152 ± 10.5	3.2 ± 0
Fransverse Weld (heat treated)	121 ± 1.4	147 ± 1.8	10.6 ± 1.4
ongitudinal Weld (as welded).	128 ± 0.8	216 ± 10.7	N/A
ongitudinal Weld (heat treated)	145 ± 7.9	155 ± 4.4	10.4 ± 1.2
Table 1. Results of tancile testing of parent material and ESW material			

Table 1: Results of tensne testing of parent material and FSW material.

Discussion

- region
- in weld nugget
- welding processes

Conclusions

- methods
- still questionable
- feasibility

Future Work

- Sub critical welding
- Fatigue testing
- Quantitative tool wear studies

Acknowledgments: This work was made possible by the National Science Foundation I/UCRC Center for **Friction Stir Processing and REU Back to the Future Site** DMR-1157074 Special thanks also goes to Dr. Alfred Boysen, Madison Kincaid, Jack Moehring, and Cory Anthony of Nucor Steel, Utah

• Higher heat input creates a larger HAZ

• Martensitic transformation leads to increased hardness and decreased ductility

 Post weld heat treatment returns hardness and ductility to acceptable levels

• Tensile properties are superior to fusion

 Mechanical properties obtained from FSW material is superior to fusion welding

Efficiency in a steel production setting

• Tool wear so far a non issue, but more data is needed to determine production